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Abstract. The paper describes a robust edge and contour extraction
technique under two types of degradation: random noise and aliasing.
The technique employs unambiguous probabilistic relaxation to distin-
guish features from noise and refine their spatial locations at sub-pixel
accuracy. The most important component in the probabilistic relaxation
is a compatibility function. The paper suggests a function with which the
optimal orientation of edges can be derived analytically, thus allowing an
efficient implementation of the relaxation process. A contour extraction
algorithm is designed by combining the relaxation process and a per-
ceptual organization technique. Results on both synthetic and natural
images are given and are promising.
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1 Introduction

Feature extraction is an essential part of most computer vision problems. Many
features such as edges and corners are high frequency components and can be
easily obscured by noise. Thus, effective feature extraction processes must incor-
porate some degree of noise removal capability. Another major obstacle against
reliable feature extraction is aliasing due to finite sampling of data. The aliasing
obscures the spatial location of features. Researchers are continually working to
overcome these problems.

Many feature extraction algorithms proposed in literature often assume that
noise has been reduced using some standard smoothing techniques such as Wiener
filter, Gaussian smoothing, and non-linear diffusion [1,10,22]. A problem with
handling noise separately from feature extraction process is that it is difficult to
determine the necessary amount of smoothing required to remove noise without
removing actual features. Even with an optimal amount of smoothing, some of
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subtle features would be lost. Another disadvantage associated with smoothing
is that it further obscures the spatial location of features. The trade-off between
signal to noise ratio (SNR) and localization accuracy is well known, and linear
filter based techniques such as Gaussian smoothing have a theoretical limit in
its performance in terms of the SNR and localization.

A more reliable approach is to distinguish features from noise by a localized
pattern analysis. The underlying assumption is that features form non-random
patterns while noise does not. Also prior knowledge of feature patterns can
improve the spatial localization of the features. Such pattern analysis is believed
to be a part of the human vision processing as evidenced by vernier hyper acuity
and contour “pop-out”[4].

Our research goal is to derive a reliable feature extraction and localization
system based on simple localized pattern analysis. Such a system is not only
for practical interest but also for theoretical one as it can bring some insight on
segmentation mechanism of the human vision system. In this paper, we employ
probabilistic relaxation or relaxation labeling ([25, 9]) to filter out random noise
and extract high frequency features and their spatial locations from low reso-
lution 1images. The technique searches for a near optimal edge configuration in
terms of its location and orientation at the sub-pixel resolution (i.e., we wish to
resolve high-resolution edge contours).

The paper suggests a general approach for designing an edge based com-
patibility function that is a core ingredient for the relaxation process. It then
provides a particular realization of the function that allows computationally effi-
cient procedure for performing the relaxation and achieving a near-optimal edge
configuration. We then develop a contour extraction technique that combines the
result of the relaxation and perceptual organization technique. The computation
is purely local and intrinsically parallel.

The paper is organized as follows. Section 2 provides a brief description of
the probabilistic relaxation followed by a detail description of how to design a
compatibility function for recovering edge configuration. Section 3 describes how
to perform the relaxation process in a computationally efficient manner. Section
4 provides a contour extraction procedure based on the relaxation and perceptual
grouping. Section 5 gives some experimental results of the edge localization and
contour extraction processes using both synthetic and natural images. Section 5
provides brief discussion on other related works and some relevant neurological
evidences. Finally, Section 6 concludes with summary.

2 Probabilistic Relaxation

The technique explores global consistency through local iterative interactions or
“relaxation”. It measures local consistency of an object to its neighbor objects
based on a collective sum of a simple pair-wise compatibility measure. The mea-
sure captures the prior knowledge of the structural or contextual patterns of
interest. At each iteration, the configuration of each object is updated so that it
is more consistent to its neighbors. The configuration of an object is represented



by the probability distribution of its labels or states. Through iterative local in-
teraction, the process approaches a more globally consistent configuration. The
technique has been studied extensively in both theory and implementation [9, 14,
21,24], and found many applications in image processing and computer vision.
[7,11]

For any applications of the probabilistic relaxation, a compatibility function
needs to be designed. It is often defined as r;;(A;, A;), of two objects at ¢ and
J having labels A; and JA;, respectively. The function quantifies how likely or
how compatible the label A; of an object at ¢ is to A; of another object at j.
We can also associate it with the conditional probability Pr(A;|A;). However,
the specification of r;;(A;, A;) is less constrained than Pr(\;|A;) as the former is
allowed to have negative values and ZA,» r;; does not have to be 1. When X; at
site ¢ is compatible (incompatible) with A; at site j, the compatibility function
should have a large (small or negative) value.

Now a support function is defined based on the compatibility function as

Si(Ni) = erij(Ai’)‘j)Pj(Aj)’ (1)

where P;(;) is the probability of having label A; at j or the Probability Density
Function (PDF) of ;. The support function measures how likely that the site
¢ is labelled as A; given the configuration of its neighbors. At last, the total
support function is defined as

§=2 2 S0P =323 23 D (N P R) (2)

The total support function measures the global consistency of the particular
configuration. The objective of the probabilistic relaxation is to maximize the
total support by iteratively updating P; Vi.

In its general form, probabilistic relaxation is not computationally amiable.
Difficulties associated with the technique are the following:

1. It is difficult to formulate the compatibility function as the function is 4
dimensional (4, j, A; and ;) in general.

2. It 1s not simple to update P; as it has to be projected onto
{pi(Ae), k= 1.K|pi(Ae) € [0,1],>7, pi(Ax) = 1} where K is the number of
possible labels, and evaluation of the support function is often computation-
ally expensive. [17,20]

The second difficulty listed above can be alleviated by using unambiguous
relaxation [9]. With unambiguous labeling, the only label allowed for an object
at 7 to take is the one that maximizes S;. By denoting the index of the label
that maximizes S; as M (i) (i.e. M (i) = argmaxg S;(Ax)), the PDF becomes
Pi(Ag) = 1if k = M (i) and P;(Ag) = 0 if & # M (¢). Then the support function

becomes
Si(Aariy) = D i Aargys Anri), (3)
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and

Si00) = 0,k # M(i). (4)
The total support function is simplified to

S=> iy, Augy): (5)
i g

Thus, the unambiguous relaxation alleviates the second difficulty listed above at
the expense of flexibility in specifying the PDF. However, we still face a problem
of designing the compatibility function. In the next sections, we concentrate on
designing the compatibility function for application to edge extraction.

2.1 Compatibility function

As described above, the compatibility function captures the prior knowledge of
the patterns of interest; thus is heavily dependent on a problem one wants to
solve. Here, our interest is to extract edges and their attributes. This section first
describes a general approach to design a compatibility function for edges. The
approach 1s based on two assumptions: invariance to an Euclidean transform
of the coordinate system and invariance to the global illumination level. Then
the section describes a particular realization of the approach for extraction of
edges under noisy condition. The realization results in a computationally efficient
procedure for maximizing the support function.

First, we consider that an edge is described by three attributes: the location
(z,y), orientation #, and strength m. It will be represented by a vector, e(z, y)
whose orientation and strength are Ze = 6 and |e] = m, respectively. Our
framework allows the location and orientation to be treated as label for the
relaxation.

We define a compatibility function for edges as

r(ei1ej):f(il‘aiy1éei7jx1jy1‘éej1|ej|) (6)

where i; and i, are the z and y coordinates of e;, respectively, as well as j,
and j, for e;. This is a function of 7 variables. Note that the function is not
dependent on |e;| as we do not treat the edge strength as label.

To simplify the design process, we assume that the compatibility function is
invariant to both translation and rotation of the coordinate system. Then, we
design a prototype function with j, = j, = 0 and Ze; = 0. Later, this prototype
function is translated to (js,jy) and rotated by Ze; to obtain the general form
of r(e;, e;). Then the prototype function can be expressed as

rij(€i, €j) = f(iz, iy, Lei, |€;]). (7)
For convenience, we use a polar coordinate in describing (iz,4y). Thus

rij(ei, ej) = fdi, i, Lei, |ej]). (8)



where d; =, /i2 + 25 and «; = arctan(iy, iz).

In most image capturing environments, the image irradiance is proportional
to the scene radiance, thus the edge strength is also proportional to the radi-
ance [27]. Our goal is to obtain a consistent edge configuration based on the
structure of objects, as much as possible, without being influenced by the level
of illumination. Thus, we impose a constraint that the order of support should
be invariant to the constant scaling of the scene illumination. To be more pre-
cise mathematically, the ratio of total supports for two different configurations
remains constant with respect to the change in the global illumination level.

It can be shown that the above constraint can be satisfied if the compatibility
function is proportional to the edge strength. Thus the prototype compatibility
function is

rij(ei, ej) = |ej|f(di, ai, Lei). (9)
Note that this is not the only choice for achieving the invariance to the global
illumination level. Obviously, making the compatibility function totally indepen-
dent of the edge strength is another option. However, we found that the scaling
of the compatibility measure by the edge strength is important as strong surface
discontinuities can strongly influence the neighboring configuration.

The next design step is to decompose f into a product of two terms: 7y, that
measures the compatibility of the edge location to e;, and r,, that measures the
compatibility of Ze; to e; given d; and a;. The functions r;,. and r,, will be
called compatibility factors. With this decomposition, f is written as

Fldi, o, Lej) = rioc(ds, ailej)ror (Leilds, o, e;). (10)

Note that we used | notation as conditional probability to make the meaning
of each factor more clearly. One can make an analogy of the decomposition
with the product rule of probability. This decomposition can be applied to any
function f and does not impose any new constraints on f. However, the design
process becomes more tractable by breaking the compatibility relationship into
two factors.

Our formulation of the compatibility factors is described next. The design is
heavily based on our intuition and other alternatives are possible.

Compatibility Factor r;,.. We arrive at our definition of r;,. empirically.
Colinearity of the Gestalt rules suggest that a; is most compatible with e; when
it is equal to Ze; or Zej + m [12]. The degree of the compatibility decreases
as a; deviates from the values. We use sinz(ai) to quantify the deviation. We
also assume that the compatibility decreases as the distance between two sites
increases. Using the ideas above as guidelines, we suggest the following function
for r;,. with distributions that are Gaussian in d; and exponential in sin2(ai).

Troc(di, o) = e sin® ()= di/207 (11)

where ¢? and # are parameters for the Gaussian and exponential distributions,
respectively.



218,
(% i)
(@ (b)

Fig. 1. Geometrical Notations. (a) Notations used in describing the compatibility
function. (b) Notations used in describing the support function maximization
procedure.

Compatibility Factor: r,,.. For r,,, we use cos(Ze; — ¢;(d;, a;, e;)). where ¢;
specifies the most compatible Ze; to e;. The function returns 1 when e; = ¢;
and —1 when e; = ¢; &+ 7. It 1s monotonic between the two extrema.

We found empirically that ¢; can be specified further. We collected natural
images of various types, measured correlation of gradient angles at different
offsets, and obtained PDFs of £V I(z,y) — LVI(z+ 0y, y+ 0y) for a distribution
of offsets (og,0y). Note that I represents image data and V is the gradient
operator. We found that the PDFs are strongly peaked at 0. Figure 2 shows
PDFs of (VI(z,y)— LVI(2+0g, y+0y) at two different offsets: (o0, 0y) = (2,0)
and (2, 2). The results suggest that the most compatible Ze; to e; is Ze;. Thus,
we set ¢; = Le;.

With the compatibility factors so designed, the prototype compatibility func-
tion is

r(ei, ej) = |ej|e_ﬁSin2(0")_df/202 cos(Ze;), (12)
and for an arbitrary e;,
r(ei, ;) = |ej|e o (eii=Les)=d%/20% s/ — Lej), (13)

d;; is the distance between (ig,iy) and (je, jy), and a;; is the slope of the line
connecting (iz,1y) and (jg, jy). See Figure 1(a).

The use of this compatibility factor results in a computationally efficient
procedure for maximizing the total support defined in (5). The next section
discusses the maximization process.

3 Relaxation Procedure

3.1 Maximizing Support Function

Computational effort is a major consideration for maximizing the total support
function. To show this, denote the number of possible edge locations by N,
and the number of possible edge orientation by N,. For simplicity, if we allow
multiple edges to share the same site, the number of possible configurations for
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Fig. 2. Correlation of Edge Orientations. The plot shows the PDF of £/VI(z,y)—
LVI(z 4 0z, y+ 0y) at different offsets, (0z,0y). Both PDFs show a strong peak
at £tVI(z,y) — LVI(z + 02,y + 0y = 0. (a) (0z,04) = (2,0) (b) (0z,04) = (2,2)

each edge is N;N,, which can be quite large for moderate cases. For example,
with N; =5 x 5 and N, = 16, Ny N, = 400. Then, in order to find M (i) which
maximizes S; in (3), a brute force method requires N; N, evaluations of S;. Thus,
the total number of evaluation of the compatibility function is N, N; N, where
N, is the number of neighbor sites contributing to the sum in (3).

Maximizing 7, The main reason for using cos function in r,,. to interpolate
between the two extrema is to reduce the computational burden and, at the same
time, increase the resolution of edge orientation. Assume that we are maximiz-
ing S; in terms of Ze;. Then by using trigonometry identities, cos(a + b) =
cos(a) cos(b) — sin(a)sin(b) and Asin(#) + Bceos(f) = VA2 4+ BZcos(f + ¢),
¢ = arctan(A/B), the support function can be expressed as

Si(le;) = Z le;|rioc cos(Le; — Lej) = Ficos(Le; — O;) (14)
J
where
Fi= (D lejIrioe cos(e;))? + (3 lejIrice sin(e;))?
J J
and

©: — arctan (Z] |ej|7°loc Sin(ej))
2 .

Zj |e;j |7i0c cos(e;)

Therefore Ze; = ©; maximizes S; and @; can be computed with N, eval-
uations of r,. instead of N,N,,. Also the domain of Ze; becomes continuous
without any computational penalty.

Another and more visually intuitive interpretation of the above formula may
be to consider a vector f;; whose length and angle are |ej|r;,. and Ze;, respec-
tively, and a vector F'; whose length and angle are F; and @;, respectively. Then



Obtain an initial edge configuration with some gradient operator
do{
for(each edge element i) {
Compute F; at the current location and its neighbor sites.
Move the edge to the location where F; is the largest
Set the edge orientation to ©; at the new location

} until convergence

Fig. 3. Procedure for Mazimizing the Total Support.

F; can be computed as a vector sum of f;;. Thus,
Fi=> fi (15)
J
and the Ze; that maximizes S; is £ F;.

3.2 Procedure

We propose a local and iterative procedure for obtaining the edge configuration
that maximizes S. Because of its local nature, the procedure is not guaranteed to
find the global maximum. However, it is computationally efficient, intrinsically
parallel and effective in finding a near-optimum solution.

The procedure updates each edge element sequentially. For each e;, F; is
computed at three different locations: the current edge location and two locations
that are e apart from e; in the direction perpendicular to Ze;. (See Figure
1(b).) The main reasons for this constrained search are the following. If the
estimated edge orientation is correct, the shortest path for the edge to reach
the contour is along the direction perpendicular to the edge orientation. Thus
the maximization process will find the accurate contour location more quickly
by moving the edge to the search direction. The search strategy also helps to
maintain uniform spacing between edges on the same contour and prevents them
from being attracted to those with high edge strength and colliding into a single
point.

Figure 3 gives a pseudo code for this procedure. We used Nitzberg-Shiota’s
gradient operator ([18]) to obtain an initial edge configuration. For each edge
element, it requires 3 evaluations of S; or equivalently F;. This is a significant
reduction from N,N;.

The edge configuration resulting from this maximization procedure is impor-
tant for determining object contours in noisy images. Our final goal is to use the
resulting edge configuration to obtain high-resolution edge contours.

4 Contour Extraction

It 1s very useful in many vision applications to extract contours at sub-pixel
accuracy. For example, an effective sub-pixel contour extraction process can aid



data analysis of low-resolution data, improve visual quality of image expansion,
and increase spatial accuracy of matching algorithms.

Using the contour fragments from the edge localization process, we create
a boundary contour that is continuous at a high resolution. We want to do in
such a way that the grouping result is compatible to our visual perception, and
the process is computationally efficient. Many edge grouping techniques have
been developed so far. We found it beneficial to develop another one that is
tailored to the particular information available to us for both computational
and performance reasons. Several steps are necessary to obtain the result.

First, localized edges are resampled on the new finer lattice. Assuming that
we are interested in extracting contours at the resolution p times higher in both
horizontal and vertical directions than the original data, the size of the resulting
contour image is p x p larger than the original. An edge, e(z,y), is placed at
(round(zp), round(yp)) of the new lattice, where round(z) returns the integer
closest to . When multiple edges reside on the same lattice, only the edge with
the largest |e| is kept.

Second, edges are grouped into a contour based on proximity and contin-
uation. Since the localization and resampling processes effectively reduce both
ambiguity of edge location and the number of spurious edges, a simple perceptual
organization technique works well for this task. Also since edges are distributed
very evenly along the contour after the localization process, the search can be
restricted to within a small neighborhood. We found that a search distance as
small as p 1s often enough for our purpose.

For each edge, our grouping procedure searches in its neighborhood for two
edges based on some proximity and continuation criteria. For the first pair,
we choose heuristically and empirically the following quantity to measure the
continuation of two edges. Denoting e; as the current edge for the grouping
process and e; as a neighbor edge with which the grouping criteria is being
evaluated, the continuation measure, p;;, is

Wij = cosz(aij — éei)cosz(aij — Lej). (16)

The definition of a;; is the same as before. Thus, the continuation measure
ranges between 0 and 1. It is 1 when the orientation of each edge is either the
same with a;; or different by 7. It is 0 when one of the edge is perpendicular to
aj;. The measure varies smoothly between the extrema.

For the second pair, we also take the smoothness of a contour formed by
the first pair and e; into consideration. Then the continuation measure for the
second pair, fi;;, is the product of the smoothness measure and ;.

fuij = sin® (0.5 % (i1 — aij))puij (17)

where a;1 is the slope of the line connecting the first pair. Again, the measure
ranges between 0 and 1. It is 1 when three edges are colinear and point the
direction of the line connecting them. It is 0 when either p;; = 0 or a;1 = ay;.
The proximity measure is incorporated into the order of the search. We first
start the search in the neighborhood whose chessboard distance is 1 from the



current lattice site (i.e. maz(|iz — jo|, |ty — jy|) = 1). If the maximum of the
continuation measure in this neighborhood is above some threshold (, then the
site associated with the maximum is selected and the search stops. When no sites
has continuation measure above (, the search continues in the neighborhood at
distance 2 then 3 and so on until the distance reaches over pre-defined maximum,
D. Advantages of this strategy are that the number of search to find a match
is smaller than having the fixed search area and the formulation of a ’goodness’
measure 1s simplified as only the continuation measure needs to be considered.
The disadvantage is that the search can miss the ’best’” match when a decent
match i1s detected before.

Note that the grouping process is not symmetric, i.e. e; selecting e; as a
grouping pair does not guarantee e; selecting e;. This asymmetric property is
used to form T-junctions.

The next step is to interpolate a pair of edges to form a contour. Typically,
the distance between a pair of grouped edges is small, and we found a simple
first-order polynomial interpolation is visually acceptable for 4 x 4 expansion
used in our experiments. For higher expansion rates, higher order polynomials
may be required. One alternative is to use an Essentially Non-Oscillatory inter-
polation scheme for better preservation of corners and junctions [26]. Another
possibility is to use the F; field so that the curve traces the ridge of the field.
These alternatives will give smoother interpolation but are more computation-
ally demanding.

For every grouped pair of edges, an 8-digital straight segment is drawn and
lattice sites on the segment including both starting and ending edge sites are
marked. Then a contour is defined as a 8-connected component of marked sites,
and the contour length is defined as the number of sites contributing to the
contour. For details of digital straight segments and how to draw them, see [16].

Now F; is computed at every contour point. When Fj is below some threshold
7, the point is removed from the contour. After the thresholding, the procedure
finally removes contours whose lengths are smaller than some threshold L.

5 Experimental Results

5.1 Edge Localization

At low resolution, our maximization procedure effectively refines edge locations
while removing spurious edges at the same time. Figure 4 shows synthetic test
images. One is without noise and the other with additive Gaussian noise. The
signal to noise ratio of the noisy image is 1.5 The image size is 64 x 64 pixels.
Throughout the experiments, the following set of parameters is used.

B=0,0=05¢c=0.25.

Figure 5 shows initial configuration of each test image. Edges are thick mainly
due to 3 x 3 mask used in the Nitzberg-Shiota operator. Thus there is 3-pixel
ambiguity in edge location even for the clean image.



Fig. 4. Synthetic Test Image. The actual size of the images is 64x64 pixels. They
are expanded by pixel duplication for viewing.

Fig. 5. Initial Fdge Configuration. The figure shows the initial edge configuration
of test images shown in Figure 4.

Figure 6 shows the results of the maximization procedure. It is evident from
the result of the clean image that the procedure effectively resolved the ambiguity
of edge location and provided more accurate locations of the edges. For the
noisy image, the procedure combined random noise edges and produced some
additional patterns. However, due to the random nature of these edges, the
patterns are shorter in length than those formed by actual contour edges. They
also tend to contain edges whose S; is small because of high curvature at the
locations. By removing edges with S; smaller than some threshold value, random
patterns are broken into even smaller pieces, and the true patterns and random
patterns can be separated effectively based on the contour length.



Fig. 6. Localized Edge Configuration. The figure shows the edge configuration of
test images shown in Figure 4 after 10 iterations.

5.2 Contour Extraction

The results of the contour extraction process are shown in Figure 7. Parameter
values are given in the figure caption. For the clean image, the complete contour
boundaries are extracted with high localization accuracy. For the noisy image,
noise edges are effectively removed while most of actual boundaries are extracted.
For the clean image, a larger D is used to connect edges at junctions.

This contour extraction process is applied to natural images. Results are
given in Figure 8. The process extracted subtle features without being affected
by random noise. For example, with the house image, it delineated the outline
of the roof more completely than other edge extraction techniques we tested.
With the seagul image, it extracted the pattern of the feather without picking
up relatively strong random patterns in the background.

5.3 Comparison

For comparison, Canny’s edge detector ([2]) is applied to the synthetic images.
The result is shown in Figure 9. The detector uses Gaussian smoothing followed
by a gradient operator for detecting edges. Such a simple linear operator fails to
distinguish true boundaries from random noise. As the amount of smoothing is
increased, the number of spurious edges decreases and at the same time the real
surface boundaries are removed as well.

Overall, the whole process of sub-pixel contour extraction on a 64x64 image
expanded to 256x256 with 20 relaxation iterations took 25 seconds on a 300MHz
SGI O2. Note that our code is not optimized for ease of maintenance (we imple-
mented it in C++4 using vector STL that contains large overheads in both speed
and memory usage) and we believe that a significant amount of improvement
on the speed can be achieved. The most computationally intensive part of the
process is the relaxation, which consumed 90% of computation time.



Fig. 7. Result of Contour Detection. Contour detection is applied on 64x64 syn-
thetic images at the 256x256 resolution. The following set of parameters is used.
Left: { =0.5, D =10, n =1.0, L =75 Right: ( =0.5, D=4, n=1.0,L =75

6 Discussion

In this section, we give brief discussion on other contour extraction works and
some neurological evidences relevant to our development. It also addresses a
drawback associated with our technique and a future extension to fix it.

As shown by Equation (14), the maximization of r,, can be done based on a
sum of vectors that are induced by edges. Similar vector field based edge extrac-
tion techniques have been proposed in the past. [3,5,6, 19] These techniques use
the field representation to measure the saliency of features while ours actively
reconfigures the edges by the probabilistic relaxation process. This active re-
configuration process tends to increase the saliency of structured patterns more
than random ones, resulting in clearer separation of two types of patterns. We
also allow the reconfiguration to take place in terms of the spatial location to
further increase the saliency of structured patterns and at the same time provide
their accurate locations.

The field based techniques can be associated with long-range interactions of
biological neurons in the visual cortex. With this view, the compatibility function
represents long-range interconnection patterns to facilitate contour completion
with their neighbors. Association field by Field et al. [4] and the oscillatory
intracortical network by Li [15] are some of examples to model the contour
integration process of the human vision using long-range neural interconnections.

The research on detecting edges at sub-pixel accuracy under noisy condition
dates back to Hueckel’s work [8]. Typically, edge locations are estimated in the
continuous domain based on theoretical modeling of image formation and edge
detection processes. Noise is often handled either by explicit thresholding on the
strength of edges or implicit smoothing by interpolation functions.

Our technique also employs image formation and edge models that are cap-
tured in the compatibility function. Instead of applying thresholding or smooth-



Fig. 8. Result of Contour Detection on Natural Images. Contours are detected
at the resolution 4x4 times higher than the original. The left column shows the
original images expanded by 4x4 using pixel duplication. The right column shows
the corresponding results. Parameters used are { = 0.1, D =4, n =0.5, L = 30
for the house and ¢ = 0.1, D =4, n = 0.5, L = 50 for the seagul.

ing, it delays handling noise until edges are reconfigured based on the relax-
ation process. The process is effective in isolating noise edges from actual object
boundaries as seen in Figure 6, and it becomes easier to separate them by simple
heuristical rules as demonstrated in Figure 7.

A drawback of the unambiguous probabilistic relaxation for handling edges
is that the technique tends to round off sharp corners and junctions due to
its deterministic nature of the PDF specifications. A natural extension of this
work is to allow more general specification of their PDFs so that corners and
junctions can be represented with multi-modal PDFs. However, the extension
loses the simplicity of the compatibility function design.

The system with the above extension resembles the hyper-column architec-
ture proposed to model the V1 area of the human visual cortex [13,23]. There
has not been any development of systems at a practical level based on the ar-
chitecture due to difficulties in designing reentrant and recurrent inter-neural



Fig. 9. Result of Canny Edge Detection. Canny edge detection is applied on syn-
thetic images of 4 at the 256x256 resolution. The original 64x64 images are ex-
panded using bi-linear interpolation prior to the edge detection operation.

connections. Our work bridges two extremes of pure neurological and engineer-
ing approachs and may give insight in the development of a neuro-morphological
contour extraction system that is more faithful to the neurological structures.

7 Conclusion

The paper described a feature extraction process using unambiguous proba-
bilistic relaxation to conduct local pattern analysis of an image. Through local
iterative interactions controlled by the relaxation process, globally consistent
patterns emerge at sub-pixel accuracy while noise is suppressed to form less
consistent patterns. By post-processing the patterns based on the consistency
measure derived from the support function, features can be separated from noise.
Our formulation of the compatibility function allows efficient relaxation process
requiring only 3 evaluations of the support function for each edge per iteration.

We developed a contour extraction procedure on a super-resolution lattice
based on the relaxation result and a perceptual organization technique. The
effectiveness of the procedure is demonstrated on both synthetic and natural
images. Comparison with Canny operator shows superior performance of our
technique in terms of noise robustness and localization accuracy.
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